
Programming assignment 3.
DNA substring frequency. Pipes and forks

Introduction

The ability to create related processes through the fork system call is often used in programs
that exploit multiple cooperating processes to solve a single problem. This is especially useful
on a multiprocessor where different processes can truly be run in parallel. In the best case, if
we have N processes running in parallel and each process works on a subset of the problem,
then we can solve the problem in 1/N the time it takes to solve the problem using 1 processor.

If it were always that easy, we would all be writing and running parallel programs. It is rarely
possible to divide up a problem into N independent subsets. Somehow the results from each
subset need to be combined. There is also a tradeoff between the benefits of parallelism and
the cost of starting up parallel processes and collecting results from different processes.

For this assignment, you will write a parallel program using Unix processes (i.e., fork). We hope
to gain some benefit from using more than one process even on a uniprocessor since we will be
reading data from files, so we might win by letting the scheduler overlap the computation of
one process with the file I/O of another process. We would hope to see a performance
improvement if the program is run on a multiprocessor.

If we genuinely wanted to write a fast parallel program on a shared-memory system, we would
use a thread package rather than multiple Unix processes. Linux/Unix processes are costly to
create, and the communication mechanisms between processes are also expensive. However,
the ultimate goal of this assignment is to let you practice creating and using multiple processes,
and it is also interesting to measure the performance of this kind of program.

Program specifications

Input

Input to the program is a set of several files, containing a small collection (300 MB) of short
DNA reads of human DNA obtained by the 1000 genomes project. Each file contains DNA
sequences of a single individual. The compressed folder is provided in file dna650MB.zip.

Output
You will write a C program called freq5, which will compute counts for each DNA sub-string of
length 5. Counting substrings of length k (called k-mers) may be of interest to bioinformatics
research, because the differences in count profiles may have a discriminative value in
classifying human populations (see for example here).

http://www.internationalgenome.org/
http://www.cdf.toronto.edu/~csc209h/fall/assignments/A3/bio_example/

The valid DNA alphabet consists of 4 “letters” only: {‘A’, ‘C’, ‘G’, ‘T’}. Thus, the total number of
different substrings of length 5 which can be generated from this alphabet is 1024. You will
count the number of all substrings of length exactly 5 characters in all input files and you will
output the histogram of counts to the standard output or to a file. The main requirement is that
the computation will be performed using multiple processes, with each process being
responsible for computing the substrings of an assigned subset of input files. You do not need
to create a chart, just produce the list of counts for each substring in the following format:

aaaaa, 123123
aaaac, 22456544
aaaag, 1222244
… etc.

For every possible combination of 4 characters you output a total number of occurrences in all
15 input files. The substrings are sorted alphabetically.

Note that most of DNA “characters” in this input are upper-case, but occasionally you may
encounter lower-case letters which have a special meaning. We will ignore this meaning, and
will treat all letters in a case-insensitive manner. The output will be printed using lower-case
letters.

Each line in the input file is an independent read obtained from the sequencing machine, thus
the count of substrings is performed for each line separately, there is no connection between
two sequences on two separate lines, except that they came from the same individual.

If you encounter a non-DNA character – that is other than {‘A’,’C’,’G’,’T’}, you will need to skip
the substring containing this character. You count the number of valid uninterrupted DNA
substrings of length 5.

Program arguments and program flow

The program accepts three parameters: one required and two optional. The first parameter is
the directory containing input files. Two optional parameters are the number of processes and
the output file name.

freq5 -d <input file dir> -n <number of processes> -o <output file name>

You must use getopt to read in the command-line arguments. The command man 3 getopt will give
you the correct man page which has a nice example that you can use as a template. You can
also find an example in the code hints section at the end of this handout.

If parameter N = <number of processes> is not specified, your program performs all the counting by
sequentially reading all files in the input folder, in its own single process. The valid values of N

Figure 1. Output format

are positive integers. You must check that the value of N is valid. If the value is 1, then you still
perform the entire computation in a single parent process as before.

If parameter N = <number of processes> is specified and is at least 2, then your program will create
N child processes and divide the input into N chunks of (approximately) equal number of files.
Each process will read content of the files assigned to it, and compute counts of all substrings.

If parameter N = <number of processes> is greater than the number of files to be processed, then
you assign a separate process per each file, so the total number of child processes should not
exceed the number of files. You do not need to issue any error message in this case, just set the
actual number of processes to the minimum between N and the number of files.

You can use a simple integer array to record counts for each substring collected so far. Because
we know the total number of all different substrings in advance, this array can be of a
predefined size.

The parent process will set up a pipe between the parent and each of its children. When a child
has finished processing its assigned set of files, it will write its counts back to the parent in the
predefined order of substrings. The parent will receive the data from each of the children by
reading one record at a time from the pipes and updating a total count for the corresponding
substring. The parent will write the final frequencies to the standard output or to the output file
if the output parameter is specified.

You process all the files in the directory specified by the input parameter -d. Before you start
running your code on a large repository of files, you probably want to create several (say, 3)
small files with up to 10 characters each, to test your program for correctness. You can
manually compute the number of substrings and compare to the output of your program. Note
that you do not need to submit your test input files. This step is only for your own personal
benefit.

Please make sure that your final output follows format substring,count specified in Figure 1. No
spaces or tabs, just a single pair per line. Substrings are sorted alphabetically.

If the optional parameter -o is specified, you output the substring counts into a specified output
file. Otherwise you write the results to stdout. Because stdout is reserved for writing output,
you must write all your error and debug messages to stderr, exactly as you did in Assignment 1.

The freq5 program will also print to stderr the total time it took to run (see below for details).

Implementation details

First, you will collect all file names in the provided directory into an array of strings. According
to the number of processes specified by the optional parameter -n, you will assign to each child
process a sub-array of file names. It would make a lot of sense to write a function to perform

counting in each sub-array of files. Each child will open the assigned files in turn, read each line,
count substrings, and update the total counts. After processing all files, each child process will
send each count through the pipe connecting the child with the parent.

The parent process will need to implement a function that reads from each of the child pipes
for each value of the substring in turn, and updates the corresponding counts. When all counts
for a particular substring have been collected, the parent process writes a single total count to
the specified output in the same sorted order. An illustration of program with 4 child processes
is presented in Figure 2.

Modularize your code into separate source files, and make use of header files as you find fit.
The decisions about how do you structure your program are up to you.

Good system programming style

This is your third C-programming assignment, and you are expected to write a clean, properly
formatted and well-documented code. You must perform proper error checking for every
section of your program that may cause an error. For example, for fork() or pipe() calls you have
to check the return code for errors, display meaningful messages, and take appropriate actions.

You must practice good system programming skills. Your program should not crash under any
circumstance. This means that the return value from all system calls must be checked, files and
pipes must be closed when not needed, and all dynamically allocated memory must be freed
before your program terminates. You should also be careful to clean up any processes left
running. You can get a list of all the processes you have on a machine by running

ps aux | grep <user name>

Figure 2. The parent reads the count for current substring from each child
process, sums up the counts and writes to the output. Then it reads the next
set of counts from the pipes. When all the counts are processed, parent has to
close the pipes.

Do not log out without checking to make sure you aren't leaving processes behind.

The parent process must ensure that all the children have terminated properly and the parent
will print out an error message if any of the children have terminated prematurely.

Experimenting with number of processes

The real question is how many processes should we use to get the best performance out of our
program? To answer this question, you will need to find out how long your program takes to
run. Use gettimeofday to measure the time from the beginning of the program until the end,
and record this time. Now perform a series of experiments by running your program with
different numbers of processes.

Think about what the performance results mean. Would you expect the program to run faster
with more than one process? Why or why not? Why does the speedup fade out? Did the
performance results surprise you? If so, how? Write a short report (1-2 paragraphs) with your
performance results and explanations and submit it in file report.pdf.

What to submit

Do not commit to your repo any input or output files.

Do remember to run svn add on any files you create that you want to be submitted. There will
be an automatic 20% deduction if you ask for a remark because you forgot to commit a file.

Commit to the following to your A3 repository:

 All the files required to compile your freq5 program.
 A Makefile that compiles your program when the user types “make”. (It must compile

and run on CDF).
 Report on your experiments in file report.pdf.

Marking scheme

20% for a correctly implemented program with a single process

60% for a multi-process version

10% for experiments and a meaningful discussion of the results

10% for a proper coding style

All this for a total 9% of the course grade.

Useful C hints

Reading program parameters using getopt

 /*

 * Sample program for parsing command-line parameters using getopt

 */

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 int main(int argc, char *argv[]) {

 char *optarg;

 int ch;

 FILE *infp, *outfp;

 char *infile = NULL, *outfile = NULL;

 /* read in arguments */

 while ((ch = getopt(argc, argv, "f:o:")) != -1) {

 switch(ch) {

 case 'f':

 infile = optarg;

 break;

 case 'o':

 outfile = optarg;

 break;

 default :

 fprintf(stderr, "Usage: test -f <input file name> "

 "-o <output file name>\n");

 exit(1);

 }

 }

 ...

 return 0;

 }

Getting names of all files within a given directory

 /*

 * This program displays the names of all files

 * in the current directory.

 * Works only for POSIX-compliant systems (Unix)

 */

 #include <dirent.h>

 #include <stdio.h>

 int main(void) {

 DIR *d;

 struct dirent *dir;

 d = opendir (".");

 if (d) {

 while ((dir = readdir(d)) != NULL) {

 printf ("%s\n", dir->d_name);

 }

 closedir (d);

 }

 return(0);

 }

Timing Your Program

Using gettimeofday: You should read the man page for gettimeofday, but here is an example

of how to use it, and how to compute the time between two readings of gettimeofday.

 struct timeval starttime, endtime;

 double timediff;

 if ((gettimeofday(&starttime, NULL)) == -1) {

 perror("gettimeofday");

 exit(1);

 }

 // code you want to time

 if ((gettimeofday(&endtime, NULL)) == -1) {

 perror("gettimeofday");

 exit(1);

 }

 timediff = (endtime.tv_sec - starttime.tv_sec) +

 (endtime.tv_usec - starttime.tv_usec) / 1000000.0;

 fprintf(stderr, "%.4f\n", timediff);

https://en.wikipedia.org/wiki/POSIX

